

Effective from Session: 2016	5-17									
Course Code	CS-301	Title of the Course	Design and Analysis of Algorithm	L	T	P	С			
Year	III	Semester	V	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
Course Objectives To analyze the problem and design an efficient algorithm to solve it by using & modifying classical design technique creating a new solution technique.										

	Course Outcomes
CO1	Would be able to analyze the problem and design an efficient algorithm to solve it by using & modifying classical design techniques or
	creating a new solution technique.
CO2	For an algorithm given all the required parameters, would be able to analyze the algorithm and evaluate its utility in the given situation, able to
	apply the approach where problem can be solved by smaller input then apply for larger perspective
CO3	Given more than one solution for the problem, would be able to evaluate and compare those using standard mathematical techniques and select
	the best solution.
CO4	For a design problem given, would be able to compare and evaluate different Data Structures available and modify or create new them for the
	same.
CO5	For given different problems, would be able to categorize the different kind of complexities and develop non deterministic solution to
	problems having large complexities.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO		
1	Introduction:	Introduction: Algorithms, Analysis of Algorithms, Growth of Functions: Asymptotic Notations, Standard Notations and Common Functions; Recurrence Methods: Substitution Method, Iteration Method, Recursion Tree Method, Master's Method.	8	1		
2	Designing of Algorithms and Advanced Data Structure	Designing of Algorithms and Advanced Data Divide & Conquer: Heap Sort, Quick Sort, Sorting in Linear Time, Medians and Order Statistics. Red-Black Trees, Augmenting Data Structure, Binomial Heaps, Fibonacci Heaps.				
3	Advanced Design and Analysis Techniques	Greedy Algorithms: Knapsack Problem, Travelling Salesperson Problem, Minimum Cost Spanning Trees: Kruskal's Algorithm, Prim's Algorithm. Dynamic Programming: Longest Common Subsequence, Matrix Chain Multiplication, 0/1 Knapsack Problem, Single Source Shortest Path: Dijkstra's Algorithm, Bellman Ford Algorithm.	8	3		
4	Amortized Analysis, Back Tracking: and Branch & Bound	Amortized Analysis, Back Tracking: and Accounting Method, Aggregate Method, Potential Method, Introduction, Subset Sum Problem, n-Queens problem and Introduction, 0/1 Knapsack, 15 Puzzle problem.				
5	String Matching and Complexity Theory	Algorithm, The Rabin-Karp Algorithm, The Knuth-MorrisPratt Algorithm. Class P and NP, NP-hard Problems, NP-Complete Problems, Polynomial Reduction, Approximation Algorithm	8	5		

Reference Books:

- 1. Coremen, Rivest, Lisserson, "Algorithms", PHI.
- 2. Horwitz & Sahani, Fundamental of Computer Algorithm, Galgotia.
- 3. Michael T. Goodrich and Roberto Tamassia, Algorithm Design: Foundation, Analysis and Internet Examples, John Wiley Publications.

e-Learning Source:

- 1. https://onlinecourses.nptel.ac.in/noc19_cs47/preview
- 2. https://nptel.ac.in/courses/106106131

					Cours	e Artic	ulation	Matrix	: (Mapp	ing of COs	with POs	and PSOs)		
PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	3	3	1	3		3	1	1			1	1	3	
CO2	2	2	3	3	1	1	2	2	1			2	2	2	1
CO3	1	1	1	2	3	1		2	2			1		3	1
CO4	2	2	1	2	2	1	2	1	3		1		2	1	1
CO5	1	2	1	3	1		1		2	3	1	1	1	2	3

1- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016	5-17									
Course Code	CS-303	Title of the Course	Principles of Operating System	L	T	P	C			
Year	III	Semester	V	3	1	0	4			
Pre-Requisite	None	one Co-requisite None								
Course Objectives	To critique segmentation To introduce To provide th To gain insig	how memory manager , paged segmentation et the concepts of Processor e knowledge of basic co	es in Operating System and various algorithms to schedule to oncepts towards process synchronization, deadlock and relate, t, disk management etc and to become familiar with the	hese p ed issu	rocesse	s.				

	Course Outcomes
CO1	The basic concepts of Operating System, its functions and services.
CO2	Design and effective memory management scheme for the operating system where there is less wastage and the response time is quick.
CO3	The basic concepts of Processes in Operating System and the application of various CPU scheduling algorithms.
CO4	Analyse the basic concepts of process synchronization, deadlock and related issues.
CO5	The basic components of file management, disk management etc and will become familiar with the protection and security mechanisms taken
	by operating system.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Desktop OS and Mobile OS	Importance of Operating Systems; Basic Concepts and Terminology; Evolution of Operating Systems: Batch, Interactive, Time Sharing & Real Time Systems. Operating System Structure: Simple Structure, Layered Approach; System Calls; Kernels: overview, objectives of kernel, types of kernels. Architecture, Android OS, iOS, Virtual OS, Cloud OS and their design.	8	1				
2	Process, Threads, CPU Scheduling and Real Time Scheduling	CPU Scheduling and Real Time Scheduling Multilevel, Feedback Scheduling. Introduction, Uniprocessor scheduling, Multiprocessor Scheduling. Multiprocessor Scheduling.						
3	Process Synchronization and Deadlock	Principles of Concurrency, Race Condition, Critical Section, Critical Section Problem, Synchronization Mechanism, Semaphores and Classical Problems of Synchronization: Bounded Buffer Problem, Readers Writers Problem. Principles, System Model, Deadlock Characterization, Methods of Deadlock Handling: Prevention, Avoidance, Detection & Recovery from Deadlock	8	3				
4	Memory Management and Virtual Memory Management	Introduction, logical vs. physical address space, swapping, contiguous memory allocation, paging, segmentation, segmentation with paging. Introduction, demand paging, performance, page replacement, page replacement algorithms (FCFS, LRU, Optimal), allocation of frames, thrashing. Other Memory Management Schemes: Swapping, Overlays.	8	4				
5	Device Management, Disk Scheduling and Protection & Security	Introduction, types of devices, FCFS, SSTF, SCAN, CSCAN, LOOK, C-LOOK Scheduling File Systems: file concept, Access Mechanism, directory structure, file system structure, allocation methods (Contiguous, linked, indexed), free-space management (bit vector, linked list, grouping), Directory implementation (linear list, hash table), efficiency & performance.	8	5				

Reference Books:

- 1. Galvin, Silberchatz "Operating Systems Principles", Addision Wesley.
- 2. Milenekovie, "Operating System Concept", McGraw Hill.
- 3. Dietal, "An Introduction to Operating System", Addion Wesley.
- 4. Tannenbaum, "Operating System Design And Implementation", PHI.
- 5. Galvin, Silberchatz "Operating Systems Principles", Addision Wesley.

e-Learning Source:

1. https://nptel.ac.in/courses/106105214

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	_			_		_						_			
CO1	3	1	1	3	2	3				1		3			
CO2	3	3	3	2	1	1		1				2			
CO3	3	2	1	1	2	2	3		2			3			
CO4	3	2	2	2	3	3				1		2			
CO5	3	1	1	1	1	2	1					2			
CO5	3	1	1 7	1	1	2	1					2			

Effective from Session: 2016	Effective from Session: 2016-17											
Course Code	CS-304	Title of the Course	Theory of Automata & Formal Languages	L	T	P	C					
Year	III	Semester	V	3	1	0	4					
Pre-Requisite	None	Co-requisite	None									
Course Objectives	include the ap	plication of mathematic	is to introduce students to the foundations of computability to cal techniques and logical reasoning to important problems, state automata and formal languages.									

	Course Outcomes
CO1	To demonstrate computational mathematical models for problem solving and describe how they relate to formal languages.
CO2	To analyse the relationship among language classes and grammars with the help of Chomsky Hierarchy.
CO3	To apply rigorous formal mathematical model for proving different properties of grammars, languages and automata.
CO4	To apply mathematical foundations, algorithmic principles and computer science theory to the modelling and design of computer based
	systems in a way that demonstrates.
CO5	Have an overview of how the theoretical study in this course is applicable to and engineering application like designing the compilers.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Finite State Machines	Finite state machine, definitions, Finite automaton model, acceptance of strings and languages Deterministic Finite Automata (DFA), Nondeterministic Finite Automata (NFA), NFA with epsilon transition, Language of NFA, Equivalence of NFA and DFA, Minimization of Finite Automata, FA with output: Moore and Mealy machine, Equivalence of Moore and Mealy Machine, Applications and Limitation of FA	8	1
2	Regular Languages	Chomsky Hierarchy, Regular Grammars, Unrestricted Grammars, Context Sensitive Language, Regular expression (RE); Definition, Operators of regular expression and their precedence, Algebraic laws for Regular expressions, Kleen's Theorem, Regular expression to FA, DFA to Regular expression, Arden Theorem, Non-Regular Languages, Pumping Lemma for regular Languages. Application of Pumping Lemma, Closure properties of Regular Languages, Decision properties of Regular Languages	8	2
3	Context Free Grammar	Context free grammar (CFG) and Context Free Languages (CFL): Definition, Examples, Derivation, Derivation trees, Ambiguity in Grammar, Ambiguous to Unambiguous CFG, Useless symbols, Simplification of CFGs, Normal forms for CFGs: CNF and GNF, Closure properties of CFLs, Decision Properties of CFLs: Emptiness, Finiteness and Membership, Pumping lemma for CFLs.	8	3
4	Push Down Automata	Push Down Automata (PDA): Description and definition, Instantaneous Description, Language of PDA, Acceptance by Final state, Acceptance by empty stack, Deterministic PDA, Equivalence of PDA and CFG, CFG to PDA and PDA to CFG, Two stacks PDA, Non-Deterministic Push Down Automata.	8	4
5	Turing Machines	Turing machines (TM): Basic model, definition and representation, Instantaneous Description, Language acceptance by TM, Variants of Turing Machine, TM as Computer of Integer functions, Universal TM, Church's Thesis, Recursive and recursively enumerable languages, Halting problem, Introduction to Undecidability, Undecidable problems about TMs. Post correspondence problem (PCP), Modified PCP, Introduction to recursive function theory	8	5

Reference Books:

- 1. Hopcroft and Ullman, "Introduction to Automata Theory Languages and Computation", Addison Wesley.
- 2. Mishra & Chandrasekhar, "Theory of Computer Sciences", PHI.
- 3. Peter Linz, "An Introduction to Formal Languages and Automata", Jones & Bartlett Learning. Recommended Prerequisite CS206Corequisite None

e-Learning Source:

1. https://nptel.ac.in/courses/106105196

					Course	Articul	lation N	Aatrix:	(Mappir	ng of COs	with POs	and PSOs	s)		
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	2	2	2	2		1		1		1		2	1		3
CO2	3	2	3	2	2	1						2		3	
CO3	3	3	3	2	1	2			2			2	2		3
CO4	3	2	2	2	3	3	1	2		1	1	2	2		
CO5	3	2	1	1		2				2		2		1	2

Effective from Session: 2016	5-17										
Course Code	CS-340	Title of the Course	Software Engineering	L	T	P	C				
Year	III	Semester	V	3	1	0	4				
Pre-Requisite	None Co-requisite None										
Course Objectives	2. Assess world s 3. To und docum 4. To dev	lop software. the applicability, streng software solutions. derstand various proces entation for software de- elop effort estimation ar	g of software, its characteristics, and importance of following this, and weaknesses of the different development life cyclesses of each phase of SDLC and make the students capacity velopment. In the different developing software is developing software. Assurance activities etc. for focusing on quality issues of software.	e mod	els to p	orovide	real				

	Course Outcomes
CO1	Identify the best suitable SDLC model for a given set of user requirements.
CO2	Estimate the total effort, to assess and manage the potential risks involved while developing the software.
CO3	Create a good quality SRS and design a highly cohesive and low coupled software.
CO4	Follow the standard coding guidelines and practices and prepare best possible test cases to uncover errors.
CO5	Work on modern CASE tools and follow the international quality standards to produce good quality software.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	Introduction to Software Engineering	Types of Software, Software Characteristics, Quality of a Good Software, Software Myths, Software Components, Software Crisis, Software Engineering: Definition, Challenges, Software Engineering Processes, Similarity and Differences from Conventional Engineering Processes. Software Development Life Cycle Models: Build and Fix Models, Waterfall Model, Prototyping Model, RAD Model Iterative Enhancement Model, Evolutionary Development Model and Spiral Model, WINWIN Spiral Model, Fourth Generation Techniques.	8	1
2	Planning a Software	Process Planning, Effort Estimation: Uncertainities in Effort Estimation, Building Effort Estimation Models, A Bottom-Up Estimation Approach, COCOMO Model, Project Scheduling & Staffing: Overall Scheduling, Detailed Scheduling, Team Structure, Software Configuration Management(SCM): - Baselines, Version Control, Change Control & Configuration Audit, Risk Management: Reactive and Proactive Risk Strategies, Software Risks, Risk Analysis, Identification, Projection, Assessment, Monitoring and Managing the Risk, RMMM Plan.	8	2
3	Software Requirements Analysis and Specification	Software Requirements: Need for SRS, Requirement Process, Problem Analysis: Informal & formal Approaches, Data Flow Modeling, Object Oriented Modeling, Prototyping, Requirements Specifications: Characteristics of an SRS, Components of SRS, Specification Language, Structure of Requirement Document: IEEE Standards for SRS, Validation, Metrics. Designing and Coding: Designing: Function Oriented Design: Design Principles: Problem Partitioning and Hierarchy, Abstraction, Modularity, Top Down and Bottom-Up Strategies, Module Level Concepts: Coupling, Cohesion; Structure Design Methodology, Verification, Introduction to Object Oriented Design & User Interface Design, Software Measurement Metrics: Various Size Oriented Measures- Halestead's Software Science, Function Point (FP) Based Measures, Cyclomatic Complexity Measures: Control Flow Graphs.	8	3
4	Coding & Testing	Coding: Programming Principles and Guidelines: Common Coding Errors, Structured Programming, Information Hiding, Programming Practices, Coding Standards, Coding Process, Refactoring, Verification: Code Inspection, Static Analysis, Proving Correctness, Combining Different Techniques, Metrics. Testing: Testing Fundamentals: Error Fault and Failure, Test Oracles, Test Cases and Test Criteria, Test Case Execution and Analysis, Unit Testing, Integration Testing: Top Down and Bottom up, Acceptance Testing: Alpha and Beta Testing., Regression Testing, functional and non-functional testing. Testing Techniques: White Box: Logic Coverage, Path Coverage, Loop Coverage, Data Flow Testing. Black Box Testing: Boundary Value Analysis, Equivalence Class Testing, state Table Based Testing, Decision Table Based Testing.	8	4
5	Computer Aided Software Engineering (CASE)	CASE Tools, Scope, Benefits of CASE Tool, support in Software Life Cycle, Architecture of CASE Environment, Types of CASE Tools, Software Reliability and Quality Management: -Software Quality Management: Quality Concepts, Software Quality Assurance, Software Reviews, Formal Technical Reviews, and Statistical Quality Assurance. Software Reliability, ISO 9000 Quality Standards, CMM Levels.	8	5

Reference Books:

- 1. Software Engineering: A Practitioner's Approach by Roger S. Pressman, McGraw-Hill International edition.
- 2. An Integrated Approach to Software Engineering, by Pankaj Jalote, Narosa Publishing House.
- 3. Software Engineering by K.K. Agarwal.
- 4. Software Engineering by Ian Sommerville, Addison-Wesley.

5. Fundamentals of Software Engineering by Rajib Mall, PHI.

e-Learning Source:

1. https://onlinecourses.nptel.ac.in/noc20_cs68/preview

	Course Articulation Matrix: (Mapping of COs with POs and PSOs)															
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO																
CO1	2	3	2	2		1	1	2	2	3	2	1	3			
CO2	3	3	2	2	1		1		2	1	3	1		2	1	
CO3	3	3	3	2					3	3		2		3		
CO4	3	2	2	2	1	3		2	3	3		2	2	1		
CO5	3	1	3	2	3	2	1	2	2	2	2	2			1	1

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016	5-17									
Course Code	CS-342	Title of the Course	DATA COMPRESSION	L	T	P	C			
Year	III	Semester	V	3	1	0	4			
Pre-Requisite	None	Co-requisite	None							
	Basic knowledge of Data compression									
Course Objectives	Types of data compression									
Course Objectives	• Var	ious techniques of Data	compression							
	 Apj 	olication of data compre	ssion							

	Course Outcomes
CO1	Understand the importance of compressions, and different compression models
CO2	Solve the various problems based on lossless compression approach such as Huffman, adaptive Huffman models
CO3	Solve problems using arithmetic and dictionary-based compression techniques.
CO4	Apply partial prediction matching, and learn to transformation of source based on Transform algorithms
CO5	Represent the various dynamic model in the form of structured vector representation

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO				
1	Introduction:	Compression Techniques: Loss Less Compression, Lossy Compression, Measures of Performance, Modeling and Coding. Mathematical Preliminaries for Lossless Compression: A Brief Introduction to Information Theory: - Models: Physical Models, Probability Models, Markov Models, Composite Source Model, Coding: -Uniquely Decodable Codes, Prefix Codes	8	1				
2	Huffman Coding	The Huffman Coding Algorithm: Minimum Variance Huffman Codes, Adaptive Huffman Coding: Update procedure, Encoding procedure, decoding procedure. Golomb Codes, Rice Codes, Tunstall codes. Application of Huffman Coding. Text compression, Audio Compression.						
3	Arithmetic Coding	Coding a Sequence, Generating a Binary Code, Comparison of Binary and Huffman Coding, Applications: Bi-Level Image Compression-JBIG and JBIG2 Standards. Dictionary Techniques: Introduction, Static Dictionary: - Diagram Coding, Adaptive Dictionary: The LZ77 Approach, The LZ78 Approach Applications. Image Compression: The Graphics Interchange Format (GIF), Compression over Modem.	8	3				
4	Prediction with Partial Match	The Basic Algorithm, The ESCAPE SYMBOL, Length of Context, The Exclusion Principle, The Burrows-Wheeler Transform, Move-to- Front Coding, CALIC, JPEG-LS, Multiresolution Approaches, Facsimile Encoding, Dynamic Markov Compression.	8	4				
5	Quantization	Introduction of Scalar and Vector Quantization, Advantages of Vector Quantization Over Scalar Quantization, The Linde-Buzo-Gray Algorithm, Tree Structured Vector Quantizes, Structured Vector Quantizes.	8	5				

Reference Books:

- 1. Introduction to Data Compression, Second Edition, Khalid Sayood, The Morgan Kaufmann Series
- 2. Data Compression: The Complete Reference 4th Edition by David Salomon, Springer
- 3. Text Compression1st Edition by Timothy C. Bell Prentice Hall
- 4. Elements of Data Compression, Drozdek, Cengage Learning

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO- PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO															
CO1	3	3	2	2	2								3	2	2
CO2	2	2	2	2	2								2	2	1
CO3	2	2	1	1	2								3	2	1
CO4	3	2	1	2	1	2	1						3	2	1
CO5	2	2	3	2	2	1	1	1					3	2	2

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2021	1-22										
Course Code	CS-391	Title of the Course	Hadoop	L	T	P	C				
Year	III	Semester	V	3	1	0	4				
Pre-Requisite	None	one Co-requisite None									
Course Objectives	2. Develop ar 3.To introduct 4. To teach the capability.	n understanding of the core the tools required to note fundamental technique	ting field of big data analytics and Hadoop. complete open-source Hadoop ecosystem and its near-term for the nanage and analyze big data like Hadoop, MapReduce es and principles in achieving big data analytics with scalabeat will help them to solve complex real-world problems in description.	ility aı	nd strea	ming					

	Course Outcomes
CO1	To provide an overview of an exciting field of big data analytics and Hadoop
CO2	Develop an understanding of the complete open-source Hadoop ecosystem and its near-term future direction.
CO3	To introduce the tools required to manage and analyze big data like Hadoop, MapReduce
CO4	To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.
CO5	To enable students to have skills that will help them to solve complex real-world problems in decision support.

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
1	BIG DATA	Develop an understanding of the complete open-source Hadoop ecosystem and its near-term future directions, compare and evaluate the major Hadoop distributions and their ecosystem components both their strengths and their limitations, and hands-on experience with key components of various big data ecosystem components and roles in building a complete big data, Future of Big Data. Knowledge of data, How to use Big insight	9	1
2	HADOOP	Why Hadoop? What is Hadoop? Hadoop vs RDBMS, Hadoop vs Big Data, Types of Data, Brief history of Hadoop, Problems with traditional large-scale systems, Requirements for a new approach, Anatomy of a Hadoop cluster.	8	2
3	HDFS	Concepts & Architecture, Data Flow (File Read, File Write), Fault Tolerance, Shell Commands, Java Base API, Data Flow Archives, Coherency, Data Integrity, Role of Secondary Name Node, Zookeeper	8	3
4	MAPREDUCE	Theory, Data Flow (Map – Shuffle - Reduce), Map Red vs MapReduce APIs, Programming Mapper, Reducer, Combiner, Partitioner, Implementation of Mahout, R, Sqoop, Yarn, what is flume Flume, the architecture of Flume, Flume Modes, the overall architecture of Ambari and Ambari' relation to other services and components of a Hadoop cluster, the functions of the main components of Ambari, initiating start and stop services from Ambari Web Console	8	4
5	HIVE AND PIG	List the characteristics of representative data file formats including flat/text files CSV XML JSON and YAML, Architecture, Installation, Configuration, Hive vs RDBMS, Tables, DDL & DML, Partitioning & Bucketing, Hive Web Interface, Why Pig, Use case of Pig, Pig Components, Data Model, Pig Latin.	8	5

Reference Books:

- 1. Gelman, Andrew, and Jennifer Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. 1st ed. Cambridge, UK: Cambridge University Press, 2006. ISBN:9780521867061.
- 2. Gelman, Andrew, John B. Carlin, Hal S. Stern, and Donald B. Rubin. Bayesian Data Analysis. 2nd ed. New York, NY: Chapman & Hall, 2003. ISBN:9781584883883
- 3. Data Science and Big Data Analytics: Discovering, Analyzing, Visualizing and Presenting Data" by EMC Education Services
- 4. Analytics: Data Science, Data Analysis and Predictive Analytics for Business" by Daniel Covington.
- 5. Machine Learning for Big Data: Hands-On for Developers and Technical Professionals" by Jason Bell.

		Course Articulation Matrix: (Mapping of COs with POs and PSOs)													
PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2				3	2					2			
CO2		2	3	2				1			2				
CO3	3	2	3	2	2				3		2				
CO4		2	3	3	3				2		3	3			
CO5	1	2	3	3	2		2		2		3	2			

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2021	1-22						
Course Code	CS-395	Title of the Course	Predictive Analysis	L	T	P	C
Year	III	Semester	V	3	1	0	4
Pre-Requisite	none						
Course Objectives	• Rea • In t • To	al-life examples of Mach he labs: Use Python libit enable students to know Clustering	elates to Machine Learning and do a comparison of each. nine learning and how it affects society in ways you may raries for Machine Learning, such as scikit-learn. real world implementation on Popular algorithms: Regress: ecommender Systems: Content-Based and Collaborative Fil	ion, Cl	assifica		nd

	Course Outcomes
CO1	To enable students how Statistical Modeling relates to Machine Learning and do a comparison of each.
CO2	Real-life examples of Machine learning and how it affects society in ways you may not have guessed!
CO3	In the labs: Use Python libraries for Machine Learning, such as scikit-learn.
CO4	To enable students to know real world implementation on Popular algorithms: Regression, Classification, and Clustering
CO5	To enable students about Recommender Systems: Content-Based and Collaborative Filtering

Unit No.	Title of the Unit	Content of Unit	Contact Hrs.	Mapped CO
	INTRODUCTION	Applications of Machine Learning		
1	TO MACHINE	 Supervised vs Unsupervised Learning 	9	1
	LEARNING	Python libraries suitable for Machine Learning		
		Linear Regression		
2	REGRESSION	Non-linear Regression	8	2
		Model evaluation methods		
	CLASSIFICATION	K-Nearest Neighbor		
		 Decision Trees 		
3		Logistic Regression		3
		Support Vector Machines		
		Model Evaluation		
	Internet need	K-Means Clustering		
4	UNSUPERVISED LEARNING	Hierarchical Clustering	8	4
	LEARINING	Density-Based Clustering		
5	RECOMMENDER	Content-based recommender systems	8	5
3	SYSTEMS	Collaborative Filtering	8	3

Reference Books:

- 1. Machine Learning by Tom M. Mitchell
- 2. Python Machine Learning by Sebastian Raschka and Vahid Mirjalili
- 3. Hands-On Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Technique to Build Intelligent Systems by Aurélien Géron
- 4. Understanding Machine Learning by Shai Shalev-Shwartz and Shai Ben-David La

PO- PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1		2	2	3		3						2			
CO2		2	3	2	2			1			2				
CO3	3	2	3	2	2	2			3		2				
CO4		2	3	3	3				2		3	3			
CO5		2	3	3	3		2		2		2	2			

2- Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016	5-17	Effective from Session: 2016-17													
Course Code	CS-302	Title of the Course	Designing and Analysis of Algorithm Lab	L	T	P	C								
Year	III	Semester	V	0	0	2	1								
Pre-Requisite	None Co-requisite None														
Course Objectives	To be ableTo learn theTo learn the	e to develop logics whic he Dynamic approach to	ide and conquers with help of various examples. h help to find the optimal solution. through various problems. ata structure and their implementation. plementation.												

	Course Outcomes
CO1	Able to understand the basic concepts of Divide and conquer their implementation.
CO2	Able to understand and develop solution to optimization problem (Greedy algorithm)
CO3	Able to analyze and develop dynamic solution and implementation.
CO4	Develop understanding of Backtracking problems and their implementation.
CO5	Understanding and develop the logic to implementation of different augmenting data structures (RB Tree).

S. No.	List of Experiments	Contact Hrs.	Mapped CO							
1	Implement Merge Sort.	2	1							
2	Implement Quick Sort (Divide & Conquer)	2	1							
3	Implement Heap Sort.	2	2							
4	Implement Knapsack problem (Greedy ALGO.)	2	2							
5	Implement of directed and undirected graph.	2	3							
6	Implement Shortest path by Dijkstra Algorithm.	2	3							
7	Implement 8- Queen problem (Back Tracking)	2	4							
8	Implement Minimal spanning tree by • Kruskal's Algorithm • Prim's Algorithm	2	4							
9	Implement Pattern Matching.	2	5							
10	Implement Binary Search Tree. 2									
11	Insert an element in Red Black Tree.	2	5							

Reference Books:

- 1. Coremen, Rivest, Lisserson, "Algorithms", PHI.
- 2. Horwitz & Sahani, Fundamental of Computer Algorithm, Galgotia.
- 3. Michael T. Goodrich and Roberto Tamassia, Algorithm Design: Foundation, Analysis and Internet Examples, John Wiley Publications.

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	2		3	1	3	1					2	1	1
CO2	2	1	3	2	1	2	3					1	2	1	1
CO3	1	2	2	2			3	2				2	2	1	1
CO4		2	2	2	1	2	3	2					2	1	1
CO5	1	2	1		1		3					1	2	1	1

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation

Effective from Session: 2016	5-17										
Course Code	CS-310	Title of the Course	OPEN SOURCE SOFTWARE TECHNOLOGIES LAB	L	Т	P	C				
Year	III	Semester	ster V								
Pre-Requisite	None	Tone Co-requisite None									
Course Objectives	ToToTo	teach students to setup t teach students to setup t learn using MySql as an	open source operating systems. heir own Linux server. heir own web server and commands open source database system. the development programming language.								

	Course Outcomes
CO1	Explain common open source licenses and the impact of choosing a license to explain open- source project structure and how to successfully
	set up a project
CO2	Competent with Linux in their systems Install different useful packages in Linux using RPM can Schedule task automatically and run
	administrative commands.
CO3	Able to understand web server easily how to store, process and deliver web pages to the users. How intercommunication is done using by
	variety of available Protocols.
CO4	Analyze the existing design of a database schema and apply concepts of normalization to design an optimal database by formulating complex
	queries in MySQL.
CO5	Design and develop Client Server applications using open source scripting language. Able how to design GUI Applications in open source
	scripting language to evaluate different processes.

S. No.	List of Experiments	Contact Hrs.	Mapped CO
1	Overview of FOSS & Basic Command interface on Linux	2	1
2	Usage of Basic Linux Commands, File and Folder Management Commands	2	1
3	Learning Network related Command and Administrative Commands	2	1
4	Learning Vi Editor & its Modes and GUI Tools	2	2
5	Learning Shell Script, A Shell Script to demonstrate various control Constructs	2	2
6	A Script to check for a file and directory existence in the file system	2	2
7	A Script to execute different command to demonstrate Switch cases statement	2	3
8	A Script to handle command line argument and other Special symbols	2	3
9	Learn how to Compile, Debug & Execute C, C++ & Java Programming Codes without IDEs.	2	3
10	Learning about LAMP STACK its Installation And Configuration on Linux (Ubuntu) and Perform Post Installation Exercises	2	4
11	Creating simple Database in MySql Server performing queries	2	4
12	Learning A Deep Dive in MySql Server Using PhpMyAdmin Tool for Administering and Monitoring the Database Server, Mysql Admin, Backup and restore, User Account Rights Management	2	4
13	Basics of PHP Web Programming, PHP code to demonstrate the usage of Variable, String, Array and Control Structure	2	4
14	Some Deep Dive in PHP Programming: - A PHP Program to implement customized functions and other Form Handling Strategies	2	5
15	A PHP Program to demonstrate the use of PHP mail () function	2	5
16	Learning Database Connectivity between PHP and MySql, create a login Control for a web page to demonstrate the use of Connectivity and Basic retrieval of data from database	2	5
17	A Mini Project to create a website for University Utilities	2	5

PO-PSO CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	1					2			3	3	2	
CO2	2	3	3	2					2			1	2	2	
CO3	3	3	2	2		2	3		2			1	1	2	
CO4	2	2	3	2	1	2			2			1	2	1	
CO5	2	2	2	2					2			1			3

Effective from Session: 2021-22											
Course Code	CS-393	Title of the Course	Hadoop Lab	L	T	P	C				
Year	III	Semester	V	0	0	2	1				
Pre-Requisite											
Course Objectives	None Co-requisite None To provide an overview of an exciting field of big data analytics and Hadoop. Develop an understanding of the complete open-source Hadoop ecosystem and its near-term future direction. To introduce the tools required to manage and analyze big data like Hadoop, MapReduce To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability. To enable students to have skills that will help them to solve complex real-world problems in decision support.										

	Course Outcomes								
CO1	To provide an overview of an exciting field of big data analytics and Hadoop								
CO2	Develop an understanding of the complete open-source Hadoop ecosystem and its near-term future direction.								
CO3	To introduce the tools required to manage and analyze big data like Hadoop, MapReduce								
CO4	To teach the fundamental techniques and principles in achieving big data analytics with scalability and streaming capability.								
CO5	To enable students to have skills that will help them to solve complex real-world problems in decision support.								

S. No.	List of Experiments	Contact Hrs.	Mapped CO				
1	Implement the following file management tasks in Hadoop:	2	1				
2	 Adding files and directories Retrieving files Deleting files Hint: A typical Hadoop workflow creates data files (such as log files) elsewhere and copies them into HDFS using one of the above command line utilities. 	2	1				
3	Install and Run Hive then use Hive to create, load, alter, and drop databases, tables.	2	2				
4	Implement Hive Partitioning with data set	2	2				
5	Implement Hive bucketing with data set.	2	3				
6	Implement sqoop commands	2	3				
7	Run a basic Word Count Map Reduce program to understand Map Reduce paradigm with data set.	2	4				
8	Implement Hbase commands with data set	2	4				
9	Install and Run Pig then write Pig Latin scripts to sort, group, join and filter your data	2	5				
10	Explore Zookeeper	2	5				
11	Explore Ambari	2	5				
Reference Books:							
•	IBM Courseware						
•	IBM Courseware						

PO-PSO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO	FOI	FO2	103	FO4	FO3	100	FO/	100	FO9	FO10	FOII	FO12	1301	F302	1303
CO1		2				3	2				2	2			
CO2		2	3	2				1	2		2				
CO3	3	2	3	2	2				3		2				
CO4		2	3	3	3		2		2		3	3		·	
CO5		2	3	3	2		2		2		3	2			

Predictive Analytics Mesmerizing & fascinating by ERIC SIEGEL

1-Low Correlation; 2- Moderate Correlation; 3- Substantial Correlation